

Processing Large Lists of Parameters and Variables
with SAS® Arrays and Macro Language

Eugene Tsykalov, GlaxoSmithKline, King of Prussia, PA

ABSTRACT

Use of SAS arrays and Macro language is
demonstrated to automatically handle large lists of
variables and parameters in normalized (vertical)
datasets without using the names of the variables
(parameters) again and again. Practical examples
include manual transpose of normalized datasets
and validation of Laboratory parameters in a clinical
trial data.

INTRODUCTION

Normalized datasets are a common way to store
large number of parameter values such as
Laboratory data in a Clinical Trial. Usually one
variable in a normalized dataset contains names of
the parameters, while other variables have values
and units for these parameters.

Processing large numbers of variables and
parameters in a normalized dataset could be a
challenging task. For example, checking correctness
of units for particular parameters, validating the
presence of a set of parameters, and crosschecking
of variables of different types may require long
chains of “if- then”, “where” and “select” statements.

This paper presents an elegant solution to automate
this process by creating macro variables containing
lists of processed variables and/or parameters of any
length.

PROCESSING LISTS OF PARAMETERS

Subsetting normalized dataset to a list of
parameters

Suppose our simplified Laboratory dataset LAB has
the following variables:

- PATIENT patient number
- TESTDATE date of lab test
- LPARM contains names of parameters
- VALUEN has numeric values of parameters
- UNIT has a text value of parameters units

Normalized dataset with Laboratory data could easily
have dozens of parameters.

To check only few of them, let’s create a macro
variable which contains the list of parameters and
use it to subset the lab dataset:

%let parm_list = granulocytes neutrophils
 eosinophils basophils lymphocytes
 monocytes wbc ;

data lab1 ;
 set lab ;

 i = 1 ;
 do while (scan("&parm_list", i, ' ') ^= ' ') ;
 if (upcase(lparm) = scan(upcase("&parm_list"), i, '
')) then output ;
 i + 1 ;
 end ;
 drop i ;

run ;

In this code, the first SCAN() function was used to
sequentially go in a DO WHILE loop through a list of
processed parameters separated by spaces. The
second SCAN() function is used to return a name of
a parameter from a list to compare it with a dataset
parameter name for subsetting.

Checking Units of Parameters

Each of the parameters could have different valid
units. With seven parameters and five possible units
for each parameter, the regular code to check each
parameter for each unit may be way too long.

The following code accomplishes this task using a
macro variable with a list of valid units. It checks if
each parameter has a unit from this list. If a
parameter has an incorrect unit it will be output with
a discrepancy reason.

%let unit_list = 10^9/L 10^3/mcL 10^3/mm^3 L/L % ;

data invalid_units ;
 set lab1 ;
 length reason $20 ;

 i = 1 ;
 do while (scan("&unit_list", i, ' ') ^= ' ') ;
 if indexw(unit, scan("&unit_list", i, ' ')) then delete ;
 i + 1 ;
 end ;

 if unit = ' ' then reason = "No unit" ;
 else reason = "Not valid unit" ;
 drop i ;

run ;

Now we use the SCAN() function to go through a list
of valid units in a DO WHILE loop. The INDEXW()
function checks if the value of variable UNIT is in the
units list. Observations with incorrect units are
routed to an output dataset.

PROCESSING LISTS OF VARIABLES

Manual Transpose of a Normalized Dataset
Converting Parameters to Variables

If we need to crosscheck parameters with each other
in a normalized dataset, we have to have all
compared parameters as variables values in the
same observation. We can use powerful PROC
TRANSPOSE to denormalize the dataset. Yet, if
data is incomplete, for example not all parameters
are present for all test dates, PROC TRANSPOSE
could produce misleading results. In such a situation
the old clean simple manual transpose would come
to rescue.

Using SAS arrays and previous techniques we can
elegantly transpose a normalized lab dataset:

proc sort data = lab1 ;
 by patient testdate ;
run ;

data lab2 ;
 set lab1 ;

 retain &parm_list ;
 by patient testdate ;

 array parms{*} &parm_list ;

 /* Initialise transposed values to missing */
 if first.testdate then
 do ;
 do i = 1 to dim(parms) ;
 parms{i} = . ;
 end ;
 end ;

 /* Transpose parameters values to variables
values */
 i = 1 ;
 do while (scan("&parm_list", i, ' ') ^= ' ') ;
 if (upcase(lparm) = scan(upcase("&parm_list"), i, '
')) then
 do ;
 parms{i} = valuen ;
 end ;
 i + 1 ;
 end ;

 if last.testdate then output ;

run ;

In this code we first use SAS arrays to create
variables with names from a list of parameters and
initialize those variable to missing values, as we will
be using RETAIN statement to collect all parameter
values in the same observation.

In the next step we use the SCAN() function to go
through a list of parameters and assign created
variables values to corresponding parameters:
parms{i} = valuen ;

Calculating a Number of Parameters in a List

In previous tasks we did not need to know how many
parameters or units to process. In some other
processing tasks the number of parameters in a list
could be used. To calculate it we can use the
following code:

data _null_ ;
 set lab1 (obs = 1) ;

 array parms{*} &parm_list ;

 n1 = dim(parms) ;
 n1_c = put(n1, 3.) ;
 call symput('n_parm', left(trim(n1_c))) ;

run ;

The statement “array parms{*}” automatically
calculates the number of elements to create. This
number is then extracted with the function dim() and
assigned to a macro variable n_parm to further use
in the program.

Crosschecking Variables

Now that we have parameters values from a
normalized dataset converted into variables values
we can do some crosschecks on these values.

For example, in our Lab dataset, let’s do the
following data checks:

- if a count of White Blood Cells (WBC) is
missing then all other parameters should be
missing (as they are components of WBC),
otherwise create a discrepancy

- if a count of White Blood Cells (WBC) is not
missing then all other parameters should be
present (as they are components of WBC),
otherwise create a discrepancy

Here is the code for these tasks:

data wbc_miss ;
 set lab2 ;

 length reason $20 ;
 array parms{*} &parm_list ;
 array diffr{*} diffr1-diffr&n_parm ;

 do i=1 to &n_parm ;
 diffr{i} = parms{i} ;
 end ;

/* If wbc is missing and at least one of other */
/* parameters is not missing */

 if (wbc = .) then
 do ;
 if (n(of diffr2-diffr&n_parm) > 0) then
 do ;
 reason = "WBC miss/Other nmiss" ;
 output ;
 end ;
 end ;

/* If wbc is not missing and at least one of other */
/* parameters is missing */

 if wbc ^= . then
 do ;
 if (nmiss(of diffr2-diffr&n_parm) > 0) then
 do ;
 reason = "WBC nmiss/Other miss" ;
 output ;
 end ;
 end ;

run ;

In order to automatically process a list of variables
with different names we need first to create a
duplicate list of variables diffr{} with a numeric suffix:

 array parms{*} &parm_list ;
 array diffr{*} diffr1-diffr&n_parm ;

 do i=1 to &n_parm ;
 diffr{i} = parms{i} ;
 end ;

For this task we will need the macro variable n_parm
created before, which has a number of variables in
the list.

Then we use functions n() and nmiss() to check the
number of missing variables values:

 if (n(of diffr2-diffr&n_parm) > 0) then …
 if (nmiss(of diffr2-diffr&n_parm) > 0) then …

and create a reason for discrepancy.

CONCLUSION

The techniques using SAS arrays and Macro
language described in this paper allow us to
automate the processing of large lists of parameters
and variables without repeatedly using names of
variables and parameters from a list.

These techniques could be useful in processing and
data checking of large normalized datasets such as
datasets with Laboratory data from Clinical Trials.
They also could be used as building blocks wherever
a processing of large lists of variables and/or
parameters is required.

CONTACT INFORMATION

Eugene Tsykalov
GlaxoSmithKline
2301 Renaissance Blvd
RN0420, P.O.Box 61540
King of Prussia, PA 19406-2772
Tel: (610)787-3855 (w)
Fax: (610)787-7074
e-mail: Eugene.2.tsykalov@gsk.com

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries.  indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

